Characterizing Land Cover Impacts on the Responses of Land Surface Phenology to the Rainy Season in the Congo Basin
نویسندگان
چکیده
Knowledge of how rainfall seasonality affects land surface phenology has important implications on understanding ecosystem resilience to future climate change in the Congo Basin. We studied the impacts of land cover on the response of the canopy greenness cycle (CGC) to the rainy season in the Congo Basin on a yearly basis during 2006–2013. Specifically, we retrieved CGC from the time series of two-band enhanced vegetation index (EVI2) acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI). We then detected yearly onset (ORS) and end (ERS) of the rainy season using a modified Climatological Anomalous Accumulation (CAA) method based on the daily rainfall time series provided by the Tropical Rainfall Measurement Mission. We further examined the timing differences between CGC and the rainy season across different types of land cover, and investigated the relationship between spatial variations in CGC and rainy season timing. Results show that the rainy season in the equatorial Congo Basin was regulated by a distinct bimodal rainfall regime. The spatial variation in the rainy season timing presented distinct latitudinal gradients whereas the variation in CGC timing was relatively small. Moreover, the inter-annual variation in the rainy season timing could exceed 40 days whereas it was predominantly less than 20 days for CGC timing. The response of CGC to the rainy season varied with land cover. The lead time of CGC onset prior to ORS was longer in tropical woodlands and forests, whereas it became relatively short in grasslands and shrublands. Further, the spatial variation in CGC onset had a stronger correlation with that of ORS in grasslands and shrublands than in tropical woodlands and forests. In contrast, the lag of CGC end behind ERS was widespread across the Congo Basin, which was longer in grasslands and shrublands than that in tropical woodlands and forests. However, no significant relationship was identified between spatial variations in ERS and CGC end.
منابع مشابه
Land use impacts on surface water quality by statistical approaches
Surface waters are the most important economic resource for humans which provide water for agricultural, industrial and anthropogenic activities. Surface water quality plays vital role in protecting aquatic ecosystems. Unplanned urbanization, intense agricultural activities and deforestation are positively associated with carbon, nitrogen and phosphorous related water quality parameters. Multip...
متن کاملImpacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China
Understanding the relationship between land use and surface water quality is necessary for effective water management. We estimated the impacts of catchment-wide land use on water quality during the dry and rainy seasons in the Dongjiang River basin, using remote sensing, geographic information systems and multivariate statistical techniques. The results showed that the 83 sites can be divided ...
متن کاملDetection of surface reflection inductions in Lorestan province using MODIS sensor products
Human interventions in natural areas as a change in land use have led to a domino effect of anomalies and then environmental hazards. These extensive and cumulative changes in land cover and land use have manifested themselves in the form of anomalies such as the formation of severe runoff, soil erosion, the spread of desertification, and salinization of the soil. The main purpose of this study...
متن کاملWater quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone.
Vegetated riparian zones adjacent to rivers and streams, can greatly mitigate nutrients, sediment from surface through deposition, absorption and denitrification, yet, human activities primarily land use practices have dramatically reduced the capacity. In this study, 42 sampling sites were selected in the riverine network throughout the upper Han River basin (approximately 95,200 km(2)) of Chi...
متن کاملHydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model
Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017